
IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5944 194

Design of Software Safety Architecture and

Software Safety Lifecycle of a Safety Critical

System, Functionality and Model of Adaptive

Cruise Control Safety Critical System

P. Sowjanya

M.Tech 2nd Year, Computer Science Engg, Vignan's Institute of Information Technology, Visakhapatnam, A.P, India

Abstract: There are many methods to ensure Safety in both Software Architecture and Software development

Lifecycle. In this paper we have shown an overview of different types of models and standards used to develop

Software Safety Architecture (SSA) and Software Safety Lifecycle (SSL) and mainly in Safety Critical Systems. In

SSA we have discussed some types of strategies, approaches, design patterns and steps to analyse Safety Aspect in

Software Architecture. In SSL we have shown three different types of implemented models such as: The model-driven

software development (MDSD), CESAR domain (aerospace, automotive, rail and automation), and GTST-MLD based

software development life cycle model. Safety Integrity and Fault Tolerance are the main important criteria of

developing these SSA and SSL. A Safety Critical embedded System i.e. Adaptive Cruise Control System (ACCS) is

taken for implementation. We have shown its basic Architecture and explained its Working technique using an

Algorithm and based on that Algorithm its basic Functioning in Java and its MATLAB Simulink Model is shown in a

brief way with its Screenshots.

Keywords: Adaptive Cruise Control System (ACCS), CESAR domain, GTST-MLD, MATLAB Simulink, model-

driven software development (MDSD), Software Safety Architecture (SSA), Software Safety Lifecycle (SSL).

I. INTRODUCTION

The role of Software in Safety Critical System is

somewhat different compared to general type of

Software‟s. Safety Critical System (SCS) is nothing but

the system which has potentially destructive power. If

such a system produced a failure at least once, the
consequences that might be very serious, such as property

loss, loss of human life and environmental damage etc.

now a days, software application in SCS is more and more

extensive, and the scale also increased drastically. From

railway transit field to the aerospace field and from the

power system to the medical system, this type of software

plays a key role in command and control aspect for

software safety. The core research in SCS safety is how to

reduce the probability of unsafe system conditions that

various SCS elements lead to, or weaken the SCS‟s

consequences that failures produce, through using a

variety of management, organization, technical measures
[1].

Safety is thus achieved by deciding upon the appropriate

design techniques to be employed in a specific system

context. In general, current practice advocates two classes

of design approaches:

 Process-based approaches. Industrial safety standards

such as IEC 61508 prescribe a set of safety design

techniques with respect to the classification of safety

criticality.

There is lack of practical guidance on demonstrating

further how to exploit these techniques to tackle specific

safety concerns. Moreover, most standards such as ARP

4761 and IEC 61508 dictate the allocation of safety

functions over software and hardware but fail to explore
the cost/benefit trade-offs behind allocation decisions.

 Architectural patterns. Architectural patterns have
recently influenced the development of dependable

systems. Yet the coarse-grained nature of design patterns

makes it difficult to reason precisely about the

achievement of desired safety properties and the design

trade-offs involved [2].

As is commonly known, a software life-cycle is a

sequence of steps describing how a development team

specifies, designs, implements, tests, and maintains a piece

of software. Each stage is described by its required inputs,

performed activities and expected outputs, together with
documentation, required properties, etc. In the case of

critical embedded software, the cycle is usually a V-cycle,

mainly decomposed into five (mandatory) phases:

requirements specification, architecture design,

implementation and low level testing, integration/

validation testing and the longest one, the maintenance

phase [13].

"Adaptive cruise control is the first system in a network of

sensors," said John Vaughan, vice president of business

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5944 195

development at M/A-Com Inc. (Lowell, Mass.), which

supplies sensors for the Mercedes system. "In time you

will have a sensor field around the car which will be used

by the vehicle's intelligence. It's the beginning of the

microwave era in automotive electronics” [12].

II. BACKGROUND

A critical system is a type of system such that 'failure' of

that system could damage in human life, environment of

the system or which can control entire equipment with its

command in operation [3]. There are mainly three types of

Critical Systems:

 Safety Critical Systems – Failure of this system may

injure or kill people, damage the environment. Example:
nuclear and chemical plants, aircraft – (Example: Weapon

industry. People will be killed if the systems work.)

 Business Critical Systems – Failure of this system may

cause great financial loss. Example: information system.

Customer information cannot be lost, or hacked

 Mission critical system – Failure of this system may

cause a mission to fail –Large values potentially wasted.

Example: Space probe. Large sums of money, many years

of waiting [4].

Safety is freedom from accidents or losses; software safety
implies the contribution of software to safety in its system

context. Another vital aspect of safety is risk. From an

engineering standpoint, there is no such thing as absolute

safety. Safety is often defined as the measure of the degree

of the freedom of risk under all conditions [5].

Architectural design -the process of defining a collection

of hardware and software components and their interfaces

to establish the framework for the development of a

computer system. [IEEE Std. 610.12-1990] ACCS is an

embedded Safety critical system which has both hardware

and software embedded in it. The Mercedes-Benz system

uses a 77-GHz Doppler radar linked into the electronic
control and braking systems to maintain a safe distance

between a car with the system and the vehicle in front of

it. Most of the new S-class vehicles are expected to ship

with the radar, which carries a premium of about $1,500

[12].

III. SAFETY IN SOFTWARE ARCHITECTURE

Fault tolerance strategies to balance the competing

requirements for both reliability and safety, MIL-STD-

1760 adopts two parallel fault tolerance strategies:

1. To assure reliable service by a redundant fault tolerant

design, and to assure safe service by a „fail silent‟ error

recovery strategy.

2. It is important to note that requirements for fault
tolerance may also introduce additional and complex

asynchronous behavior which may exhibit even higher

proportions of requirements related design faults than

mission functions [6]

Fig.1. Safety-oriented SA design approach [7]

It is the key to design safe software that using the divide-

and-conquer strategy when constructing safe architecture

of software system. This approach is based on a
hierarchical system model. The first step is to analyse the

software requirement belong to one layer, and then

according to the requirements specification, we should

elicit functional requirements and safety requirements.

However, not all the safety requirements can be

individually extracted, some safety requirements are often

reflected in the functional requirements. After obtaining

the safety requirements through preliminary hazard

identification, the second step is to conduct preliminary

hazard analysis. At the same time, deriving and

preliminarily selecting the feasible safety tactics. The third
step is to further refine and classify these safety tactics. By

analysing the severity caused by the system or architecture

elements failure, safety metrics should be determined. The

fourth step is through analysing the fundamental

protection mechanism of safety tactics and the safety

metrics, the feasible safety tactics will be filtered again,

and the architecture should be constructed by choosing

suitable safety tactics combination. At last, we should

check whether the safety tactics combination can meet the

safety requirements to control the software failure within

an acceptable level of risk.

Safety architecture design patterns:

a) There are 9 different types of design patterns

recommended by MIL-STD-1760 for different purposes :

Inoperability design pattern, System level redundancy

pattern, Homogenous redundant design pattern, Dissimilar

redundancy design pattern, Monitor/actuator control
channel pattern, Control & authority independence,

Firewall (segregation) design pattern, Physical (spatial)

proximity pattern, Signal complexity pattern [6]. The

Architecture Analysis & Design Language (AADL) is a

de-facto standard in the domain of avionics and

automotive software systems.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5944 196

IV. SAFETY IN SOFTWARE LIFECYCLE

 For safety-critical systems it is often compulsory to

perform various safety-related analyses as part of the

software development lifecycle. The model-driven
software development (MDSD) vision seems very

promising in efficiently tackling the essential complexities

(including safety concerns) of the software development

process. Various standards, tools and techniques that are

well-aligned with the MDSD vision are currently

becoming widely accepted by the industry. RAM

commander could be used to plug-in certain safety-related

analyses, such as Failure Mode Effects Analysis (FMEA)

and Fault Tree Analysis (FTA). The end-to-end

development process leverages the V-model and the
DSDM Atern agile framework.

The phases covered by the standard are as follows.

Requirements Baseline corresponds to the complete

specification provided by the end-user regarding the

software product expectations. Technical Requirements

correspond to all technical aspects that the software shall

fulfil with respect to the end-user requirements. Software

Architecture Design corresponds to the overall

architecture that is created and refined based on the

technical requirements. Software Component Design
corresponds to a more detailed description of the elements

described by the software architecture. Implementation

corresponds to the development of the various software

components described in the software component design

phase. Verification corresponds to the testing of produced

implementation in order to verify the correctness of the

product performance. Validation corresponds to the testing

of the software components as well as the complete

software in order to validate the correctness of product

performance [8].

The concept of the GTST-MLD-based software
development life cycle model follows a hierarchical

decomposition of software development life cycle

activities. The main step to implement a GTST-MLD-

based structural hierarchy is to decompose a function into

sub-elements. The decomposition process is repeated until

some lowest level of elementary activities is reached.

Guidance on Software Review for Digital Computer-

Based Instrumentation and Control System (BTP-14) is

written by US Nuclear Regulatory Commission. BTP-14

was developed from IEEE Standards for different

activities for the software life cycle and important design
factors for safety critical software. Figure was derived

from the information in NUREG/CR6101 and BTP-14.

Planning a software development project can be a complex

process involving a hierarchic set of many activities [9].

An analysis interaction between implementation phase

elements is extremely important for safety, because,

software requirement safety analysis is concerned with

criticality analysis, system analysis, specification analysis

and timing and sizing analysis. Also, all safety-related

analyses should be performed in the design and the

implementation phases. Safety-related functions of

systems will be easily defined after the decomposition of

the functional requirements.

The system design life-cycle in each CESAR domain

(aerospace, automotive, rail and automation) is

characterized by many commonalities, there are also

inherent differences, prescribed by domain standards,

which are usually reflected in the overall engineering

activities.

The aim of the “CESAR-proposed” component-based

development process is to provide a methodology that

allows leveraging the productivity gains offered by uniting

model-based development with component-based
development.

This enhanced development process can be summarized as

follows:

 Use of models as a basis for the development process,

 Definition of components as primary and mandatory

artefacts throughout the development life-cycle,

 Traceability between development steps, requirements

and various types of artefacts in general,

 Possibilities for early verification and validation (at

design stage),

 An enhanced safety process based on models that are

fully linked and/or synchronized with system design
models.

 Adoption of product line principles during component

design that can promote re-usability

CESAR design methodologies and suggested modelling

approach also strongly promotes component-based

engineering (CBE) principles during design and

construction of safety-critical systems [10].

Fig. 2. Hierarchical Lifecycle of Safety Critical System.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5944 197

Fig. 3. Atern V-lifecycle for Safety critical systems

V. A SAFETY CRITICAL EMBEDDED SYSTEM

ADAPTIVE CRUISE CONTROL SYSTEM (ACCS):

Adaptive cruise control is also called active cruise control,

autonomous cruise control, intelligent cruise control, radar
cruise control, or traffic-aware cruise control. Adaptive

Cruise Control (ACCS) is an automotive feature that

allows a vehicle's cruise control system to adapt and adjust

the vehicle's speed to the traffic environment. A radar

system attached to the front of the vehicle down the

bumper is used to detect whether slower moving vehicles

are in the ACCS vehicle's path.

If a slower moving vehicle is detected, the ACCS system

will slow the vehicle down and reduces the time gap,

between the ACCS vehicle and the opposite vehicle. If the
system detects that the forward vehicle is no longer in the

ACCS vehicle's path, the ACCS system will accelerate the

vehicle back to its set cruise control speed. This operation

allows the ACCS vehicle to autonomously slow down and

speed up with traffic without intervention from the driver.

The method by which the ACCS vehicle's speed is

controlled is via engine throttle control and limited brake

operation [11].

Fig. 4. Architecture of ACCS

A.SAFETY ALGORITHM

1. Start the vehicle and Car speed (S1) of our vehicle

using a speed sensor.

2. Take two distances (D1 and D2) with difference of

some period of time (eg.1 millisecond) using a
RADAR.

3. Calculate the opp. car speed by using the speed of our

vehicle and RADAR inputs.

4. Difference between the distances (DD = D2-D1), i.e.

distance of the vehicle for 1st unit of time and 2nd unit

of time.

5. Now opp. car speed (S2 = S1 + DD), i.e. Sum of Our

Car Speed and Total Difference DD.

6. This is taken as the Controlled Speed of our vehicle

CS.

7. Now we can Increase or Decrease the Throttle value
and the Controlled Speed (CS) depends on the opp. car

speed (S2).

8. Irrelevant data such as suddenly to null or huge

difference of RADAR input, Switching on to ABS is

done.

9. ACCS enabled, Repeat from Step1.

B. FUNCTIONING OF ACCS IN JAVA:

In java we have improved few user interface screens of

Adaptive Cruise Control System (ACCS) such as

Welcome Page, Login Page, Parameters, and Set Speed

etc. We have done a Basic functioning ACCS in Java with
few parameters such as speed of the vehicles, Radar input,

Set speed of the vehicle distance, Distance between two

cars and so on.

Fig. 5. Functionality of Adaptive Cruise Control System

(ACCS)

By looking at this Interface we have to click start the car

button and our car speed can be manually given or get

adjusted through the Sliding bar. Later the input for our

ACCS is taken by Radar which is used to calculate the

distance between two cars and by using algorithm in
functionality of ACCS we can get at what speed is the

opposite vehicle travelling and at what speed our vehicle

must get controlled in order to avoid collision or accident

between the two vehicles. In the above interface the Opp.

car speed need not be given manually, it is automatically

calculated by the input of radar. If the radar input is below

300 units of distance then ACCS automatically gets

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5944 198

activated. This set speed can be given and decided by us, it

may be in between 300-600 units of distance. If the

vehicle is moving below that distance, our ACCS will

automatically get activated and slows down our vehicle to

a certain speed as of the opposite vehicle‟s speed. This
speed is given as Controlled speed in result. If the distance

between two vehicles gets very closer or if the opposite

vehicle is stopped then the ACCS equipped vehicle also

must stop or should be in an idle state.

C. RESULTS

 The result graph of this ACCS was done use java free

charts and this shows the functioning of an entire ACCS.

This is done using thread concept of java and the graphical

representation shows in the graph.

Fig. 6. Graph showing speed of the cars and distance

between them.

In this graph we can show the speed of the vehicle

(gradually increased or decreased) with equal to the
opposite car speed. Accordingly our ACCS gives a result

of controlled speed which must be done using a speed

sensor. In the result we can clearly see that whenever the

opposite vehicle is in the set speed area of ACCS within

the range of the RADAR then our vehicle enables ACCS

and moves in a controlled speed. If opposite vehicle is not

in range of the set speed our vehicle sets to normal speed

and disables ACCS.

VI. CONCLUSION

Adaptive Cruise Control system was developed for the
purposes of driving with both safety and comfort. It

reduces the number of brake and switch operations that are

required of the driver. As a result, the system reduces the

driving burden so that the driver can drive in comfort. In

this paper we have shown a basic functionality of an

Adaptive Cruise Control system done in MATLAB

Simulink Software. When the input value are given to the

Radar and our speed, the calculation of front v speed and

controlled speed came as a result. The effects and causes

of these ACCS parts were identified by using Failure

Mode Effective Analysis (FMEA) and root causes of these
failures were analysed by using Fault Tree Analysis

(FTA). The combined results of FMEA and FTA provide

input for analysis of temporal or causal justification for

prioritization of verification or validation test systematic

approach from system down to subsystem.

REFERENCES

[1] Springer, 1989, vol. 61.International Conference on Information

Science and Computer Applications (ISCA 2013）Safety-Oriented

Software Architecture Design Approach by Yuling Huang,

[2] M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin, in

Managing Architectural Design Decisions for Safety Critical

Software Systems Weihang Wu, Tim Kelly

[3] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, “High-speed

digital-to-RF converter,” U.S. Patent 5 668 842, Sept. 16,

1997.https://courses.cs.washington.edu/courses/cse466/05sp/pdfs/...

/L12-Critical_Systems.pdf

[4] Safety-Critical Systems by Rikard Land

[5] Leveson, N.G.: Safeware: System Safety and Computers. Addison-

Wesley (1995)

[6] Safety, Software Architecture and MIL-STD-1760 by Matthew

John Squair Senior Safety Consultant Jacobs Australia GPO Box

1976, Canberra, ACT 2601

[7] Safety-Oriented SoftwareArchitecture Design Approach Yuling

Huang in International Conference on Information Science and

Computer Applications (ISCA 2013）

[8] Model-Driven Software Development of Safety-Critical Avionics

Systems: an Experience ReportAram Hovsepyan, Dimitri Van

Landuyt, Steven Op de beeck, Sam Michiels, Wouter Joosen,

Gustavo Rangel, Javier Fernandez Briones, Jan Depauw, iMinds-

DistriNet, KULeuven Space Applications Services N.V./S.A.

[9] SOFTWARE DEVELOPMENT LIFE CYCLE MODEL TO

ENSURE SOFTWARE QUALITY by Nihal Kececi, and

Mohammad Modarres

[10] http://www.springer.com/978-3-7091-1386-8, The System Design

Life Cycle by NikolaosPriggouris, Adeline Silva, Markus Shawky,

Magnus Persson, Vincent Ibanez, Joseph Machrouh, Nicola

Meledo, Philippe Baufreton, and Jason Mansell Rementeria

[11] Adaptive Cruise Control System Overview by 5th Meeting of the

U.S. Software System Safety Working Group April 12th-14th 2005

@ Anaheim, California USA

[12] Adaptive cruise control takes to the highway BY Peter Clarke on

10/20/1998 06:06 PM EDT

[13] Development Life-cycle of Critical Software Under

FoCaL1Philippe Ayrault Etersafe 43, Semantics, Proofs and

Implementation Laboratoire Informatique de Paris 6 Pierre & Marie

Curie University 104, Avenue du President Kennedy F-75016 Paris.

BIOGRAPHY

P. Sowjanya is currently doing M.Tech

2year CSE in Vignan‟sinstitute of

information technology, Visakhapatnam.

She completed her B. Tech CSE in Sri

Chaitanya Engineering College,

Visakhapatnam. She had published 2

papers for Internet of Things and Cloud
Computing domains. Her areas of research includes Safety

Critical Systems, Internet of Things, Cloud Computing

and Big Data.

https://courses.cs.washington.edu/courses/cse466/05sp/pdfs/.../L12-Critical_Systems.pdf
https://courses.cs.washington.edu/courses/cse466/05sp/pdfs/.../L12-Critical_Systems.pdf
https://courses.cs.washington.edu/courses/cse466/05sp/pdfs/.../L12-Critical_Systems.pdf

